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Abstract. The expansion of either crystal-field or electron–electron potentials usually makes use
of the addition theorem for spherical harmonics. Hence, in order to calculate matrix elements of
the potential taken between electronic states, one must perform integrals of the product of three
spherical harmonics. Tables are readily available for these integrals. However, it is often more
convenient to express the electronic states in terms of real functions, so-called kubic harmonics, and
the addition theorem can be rewritten in terms of kubic harmonics. This results in the necessity of
calculating integrals that are the products of three kubic harmonics. We tabulate here the required
integrals. We have found these tables useful and believe that they may be useful to others.

1. Introduction

It is often easier to express crystal-field matrix elements using a kubic harmonic basis set rather
than the usual spherical harmonics. (The term kubic harmonic was first coined by Von der
Lage and Bethe [1].) This is particularly true for low-symmetry crystal fields. This kind of
representation also allows for insight and physical interpretation of the crystal-field parameters
that is not afforded with spherical harmonic representations [2–4]. A problem arises however
in the computation of the full Hamiltonian in that the electron–electron interaction is almost
always calculated using a spherical harmonic representation for the electronic states. This
necessitates a change in basis in order to calculate the crystal-field matrix elements. While
this is not excessively difficult, it is an extra step. An alternative would be to employ a kubic
harmonic basis from the outset. Hence, we need to calculate the electron–electron interaction
in terms of kubic harmonics.

The interaction between electrons or the interaction between an electron and a
neighbouring ion involves the expansion of 1/rij ; cf [6] and [5]. This is nicely handled
using the generating function for the Legendre polynomials. The Legendre polynomial (Pk)
is then expanded using the addition theorem for spherical harmonics (Ykm)

Pk(cosω) =
(

4π

2k + 1

) k∑
m=−k

Ykm(θi, φi)Y
∗
km(θj , φj ) (1)

where ω is the angle between (θi, φi) and (θj , φj ), which along with ri and rj give the positions
of the two interacting charges. The sum of products of spherical harmonics, however, can be
rewritten as a sum of products of kubic harmonics (KHkq) [5]

Pk(cosω) = 1

2k + 1

∑
q

KHkq(xi, yi, zi)KHkq(xj , yj , zj ). (2)
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Table 1. Kubic harmonic operators (KHkq ) for k = 0–6 normalized to 4π . Each function must be
divided by a factor of rk , and is labelled according to its transformations under the rotation group
of the cube. Further details are discussed in the text.

k = 0(a1) 1

k = 1(t1)
√

3z

k = 2(eθ )
√

5/2(3z2 − r2)

k = 2(eε)
√

15/2(x2 − y2)

k = 2(t2ζ )
√

15xy

k = 3(a2)
√

105xyz

k = 3(t1z)
√

7/2z(5z2 − 3r2)

k = 3(t2ζ )
√

105/2z(x2 − y2)

k = 4(a1)
√

21/4(5(x4 + y4 + z4) − 3r4)

k = 4(eθ )
√

15/2(7(z4 − 1/2(x4 + y4)) − 6(z2 − 1/2(x2 + y2))r2)

k = 4(eε) 3
√

5/4(7(x4 − y4) − 6(x2 − y2)r2)

k = 4(t1z) 3
√

35/2xy(x2 − y2)

k = 4(t2ζ ) 3
√

5/2xy(7z2 − r2)

k = 5(eθ ) 3
√

385/2xyz(x2 − y2)

k = 5(eε) −√
1155/2xyz(3z2 − r2)

k = 5(ta1z)
√

11/8(63z5 − 70z3r2 + 15zr4)

k = 5(tb1z) 3
√

385/8z(x4 − 6x2y2 + y4)

k = 5(t2ζ )
√

1155/4z(3z2 − r2)(x2 − y2)

k = 6(a1)
√

26/8(2r6 − 21(x2y2 + y2z2 + z2x2)r2 + 231x2y2z2)

k = 6(a2)
√

30 030/8(x4y2 + y4z2 + z4x2 − x2y4 − y2z4 − z2x4)

k = 6(eθ )
√

182/4(11(z6 − 1/2(x6 + y6)) − 15(z4 − 1/2(x4 + y4))r2 + 5(z2 − 1/2(x2 + y2))r4)

k = 6(eε)
√

546/8(11(x6 − y6) − 15(x4 − y4)r2 + 5(x2 − y2)r4)

k = 6(t1z) 3
√

91/4xy(11z2 − r2)(x2 − y2)

k = 6(ta2ζ )
√

2730/16xy(33z4 − 18z2r2 + r4)

k = 6(tb2ζ )
√

6006/16xy(3x4 − 10x2y2 + 3y4)

This result follows because the kubic harmonics are real and can be obtained from the spherical
harmonics for a given value of k through a unitary transform. We note, however, that while
the spherical harmonics are normailized to unity, the kubic harmonics are normalized to 4π ;
hence the absence of 4π from the numerator of equation (2). In order to be explicit in our
definitions, we show in table 1 the kubic harmonics up to k = 6 [1]. (Whereas γ1 and γ2 in [1]
transform as eθ and eε , repectively, γ ′

1 and γ ′
2 transform as −eε and eθ , repectively. The only

error we have found is in α8 in which the coefficient of ρ8 should be −1/3, not −1/6.) The
x(ξ) and y(η) kubic harmonics within the t1(t2) manifolds are simply obtained by permuting
the variables x, y and z in the corresponding z(ζ ) kubic harmonic. We note that each of these
functions must be divided by a factor of rk and that the functions are labelled according to the
irreducible representations of the rotation group of the cube, not of the tetrahedron.

In order to calculate matrix elements of the potential using a kubic harmonic basis set for
the electrons, we need to determine the integrals of the product of three kubic harmonics

ckq(lm, l′m′) = 1

4π

∮
us

KHlm(x, y, z)KHkq(x, y, z)KHl′m′(x, y, z) dS (3)

where the integral is over the surface of the unit sphere. (The factor of (4π)−1 makes the KHlm

and KHl′m′ normalized electronic states.) Table 2 tabulates the quantities ckq(lm, l′m′) which
are unchanged by any permutations of (kq), (lm) and (l′m′). (We have found an error in the
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overall constant that multiplies the factors given in the table of [6] for the k = 5 component
of the d–f interaction. We have determined this overall factor to be

√
35/231.) We note that

while there is only one possible Ykq , for k fixed, which results in a non-zero integral when
taken between Ylm and Yl′m′ , there may be more than one kubic harmonic KHkq that results in a
non-zero integral when taken between kubic harmonics KHlm and KHl′m′ . Of course, the usual
triangle inequality holds on the values of k, |l − l′| � k � l + l′, and the sum k + l + l′ must be
even. The particular kubic harmonic operator from within a t1 or t2 manifold that couples the
kubic harmonic wavefunctions KHlm and KHl′m′ can be determined from the group coupling
coefficients, like those given in appendix 2 of [5] or those of [7]. Briefly summarizing these
tables, kubic harmonics of t1z symmetry couple a1(2) states to t1z(2ζ ) states as well as eθ(ε) states
to t1z states, and t1x(1y) states to t2η(2ξ) states. Also, kubic harmonics of t2ζ symmetry couple
a1(2) states to t2ζ(1z) states as well as eθ(ε) states to t2ζ states, and t1x(2ξ) states to t1y(2η) states.
The coupling properties of the other t1 and t2 states can be obtained from cyclic permutations
of x, y, z(ξ, η, ζ ) in these rules.

2. Discussion

In this section, we give an example of the application of the tables to demonstrate how
easily they can be used. We determine the diagonal matrix element of the electron–electron
interaction within the (ξηθ̄) Slater determinant from the d3 configuration. (The bar over the θ

state indicates the spin-down state.) The electron–electron interaction Ee–e in this instance is
composed of three direct Coulomb integrals and one exchange integral

Ee–e = 〈ξη||ξη〉 + 〈ξθ ||ξθ〉 + 〈ηθ ||ηθ〉 − 〈ξη||ηξ〉 (4)

where

〈ψiψj ||ψmψn〉 =
∫

ψ∗
i (1)ψ

∗
j (2)1/r12ψm(1)ψn(2) d3r1 d3r2. (5)

Expanding 1/r12 using the addition theorem for kubic harmonics and using the definition of
ckq(lm, l′m′) in equation (3), 〈ξη||ξη〉 is expanded as

〈ξη||ξη〉 =
∑

k=0,2,4

Fk

2k + 1

∑
q

ckq(dξ , dξ )ckq(dη, dη)

= [F 0 + 1
5

5−15
49 F 2 + 1

9
84+60−180

441 F 4] (6)

where the ckq(lm, l′m′) have been taken from table 2 and the Fk are the radial integrals
associated with the kth term in the expansion of 1/r12; cf [6]. In a similar fashion, we also
find that

〈ξθ ||ξθ〉 = [F 0 + 1
5

10
49F

2 + 1
9

−126−90
441 F 4]

〈ηθ ||ηθ〉 = [F 0 + 1
5

10
49F

2 + 1
9

−126−90
441 F 4]

〈ξη||ηξ〉 = [ 1
5

15
49F

2 + 1
9

180
441F

4].
(7)

The use of kubic harmonics in problems relating to the crystal-field interaction is far
easier than the use of spherical harmonics [2–4]. The expansion of the crystal field in terms
of the irreducible representations of the cubic group can be done by simply examining the
geometrical configuration of the atoms giving rise to the crystal field. Often, this geometrical
configuration of atoms can be described as a reduction from (a distortion of) cubic symmetry.
The operators found in the crystal-field interaction are simply the basis functions of the
irreducible representations that possess the same symmetry (that transform in the same manner
under the cubic group symmetry operators) as the distortions used to reduce the symmetry from
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Table 2. Values for the integrals of the products of three kubic harmonics, ckq (lm, l′m′).

ψi ψj k = 0(a1) k = 2(eθ ) k = 2(eε) k = 2(t2)

s s 1

px px 1 −√
5/5

√
15/5 0

px py 0 0 0
√

15/5

px pz 0 0 0
√

15/5

py py 1 −√
5/5 −√

15/5 0

py pz 0 0 0
√

15/5

pz pz 1 2
√

5/5 0 0

dξ dξ 1
√

5/7 −√
15/7 0

dξ dη 0 0 0
√

15/7

dξ dζ 0 0 0
√

15/7

dξ dθ 0 0 0
√

5/7

dξ dε 0 0 0 −√
15/7

dη dη 1
√

5/7
√

15/7 0

dη dζ 0 0 0
√

15/7

dη dθ 0 0 0
√

5/7

dη dε 0 0 0
√

15/7

dζ dζ 1 −2
√

5/7 0 0

dζ dθ 0 0 0 −2
√

5/7
dζ dε 0 0 0 0

dθ dθ 1 2
√

5/7 0 0

dθ dε 0 0 −2
√

5/7 0

dε dε 1 −2
√

5/7 0 0

fa fa 1 0 0 0
fa fx 0 0 0 −2/3
fa fy 0 0 0 −2/3
fa fz 0 0 0 −2/3
fa fξ 0 0 0 0
fa fη 0 0 0 0
fa fζ 0 0 0 0

fx fx 1 −2
√

5/15 2
√

15/15 0

fx fy 0 0 0 −√
15/30

fx fz 0 0 0 −√
15/30

fx fξ 0
√

3/3 1/3 0
fx fη 0 0 0 −1/6
fx fζ 0 0 0 1/6

fy fy 1 −2
√

5/15 −2
√

15/15 0

fy fz 0 0 0 −√
15/30

fy fξ 0 0 0 1/6

fy fη 0 −√
3/3 1/3 0

fy fζ 0 0 0 −1/6

fz fz 1 4
√

5/15 0 0
fz fξ 0 0 0 −1/6
fz fη 0 0 0 1/6
fz fζ 0 0 −2/3 0
fξ fξ 1 0 0 0

fξ fη 0 0 0 −√
15/6

fξ fζ 0 0 0 −√
15/6
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Table 2. (Continued)

ψi ψj k = 0(a1) k = 2(eθ ) k = 2(eε) k = 2(t2)

fη fη 1 0 0 0

fη fζ 0 0 0 −√
15/6

fζ fζ 1 0 0 0

ψi ψj k = 4(a1) k = 4(eθ ) k = 4(eε) k = 4(t1) k = 4(t2)

dξ dξ −2
√

21/21 −2
√

15/21 2
√

5/7 0 0

dξ dη 0 0 0 0 2
√

5/7

dξ dζ 0 0 0 0 2
√

5/7

dξ dθ 0 0 0 −√
105/14 −√

15/14

dξ dε 0 0 0 −√
35/14 3

√
5/14

dη dη −2
√

21/21 −2
√

15/21 −2
√

5/7 0 0

dη dζ 0 0 0 0 2
√

5/7

dη dθ 0 0 0
√

105/14 −√
15/14

dη dε 0 0 0 −√
35/14 −3

√
5/14

dζ dζ −2
√

21/21 4
√

15/21 0 0 0

dζ dθ 0 0 0 0
√

15/7

dζ dε 0 0 0
√

35/7 0

dθ dθ

√
21/7

√
15/7 0 0 0

dθ dε 0 0 −√
15/7 0 0

dε dε

√
21/7 −√

15/7 0 0 0

fa fa −2
√

21/11 0 0 0 0

fa fx 0 0 0 0 −√
3/11

fa fy 0 0 0 0 −√
3/11

fa fz 0 0 0 0 −√
3/11

fa fξ 0 0 0
√

35/11 0

fa fη 0 0 0
√

35/11 0

fa fζ 0 0 0
√

35/11 0

fx fx
√

21/11 −√
15/22 3

√
5/22 0 0

fx fy 0 0 0 0 3
√

5/11

fx fz 0 0 0 0 3
√

5/11

fx fξ 0 −3/22 −√
3/22 0 0

fx fη 0 0 0 −√
21/11 −2

√
3/11

fx fζ 0 0 0 −√
21/11 2

√
3/11

fy fy
√

21/11 −√
15/22 −3

√
5/22 0 0

fy fz 0 0 0 0 3
√

5/11

fy fξ 0 0 0 −√
21/11 2

√
3/11

fy fη 0 3/22 −√
3/22 0 0

fy fζ 0 0 0 −√
21/11 −2

√
3/11

fz fz
√

21/11
√

15/11 0 0 0

fz fξ 0 0 0 −√
21/11 −2

√
3/11

fz fη 0 0 0 −√
21/11 2

√
3/11

fz fζ 0 0
√

3/11 0 0

fξ fξ −√
21/33 7

√
15/66 −7

√
5/22 0 0

fξ fη 0 0 0 0
√

5/11

fξ fζ 0 0 0 0
√

5/11

fη fη −√
21/33 7

√
15/66 7

√
5/22 0 0
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Table 2. (Continued)

ψi ψj k = 4(a1) k = 4(eθ ) k = 4(eε) k = 4(t1) k = 4(t2)

fη fζ 0 0 0 0
√

5/11

fζ fζ −√
21/33 −7

√
15/33 0 0 0

ψi ψj k = 6(a1) k = 6(a2) k = 6(eθ ) k = 6(eε)

fa fa 20
√

26/143 0 0 0
fa fx 0 0 0 0
fa fy 0 0 0 0
fa fz 0 0 0 0
fa fξ 0 0 0 0
fa fη 0 0 0 0
fa fζ 0 0 0 0

fx fx 25
√

26/429 0 −25
√

182/858 25
√

546/858
fx fy 0 0 0 0
fx fz 0 0 0 0

fx fξ 0 5
√

2002/429 −5
√

2730/858 −5
√

910/858
fx fη 0 0 0 0
fx fζ 0 0 0 0

fy fy 25
√

26/429 0 −25
√

182/858 −25
√

546/858
fy fz 0 0 0 0
fy fξ 0 0 0 0

fy fη 0 5
√

2002/429 5
√

2730/858 −5
√

910/858
fy fζ 0 0 0 0

fz fz 25
√

26/429 0 25
√

182/429 0
fz fξ 0 0 0 0
fz fη 0 0 0 0

fz fζ 0 5
√

2002/429 0 5
√

910/429

fξ fξ −15
√

26/143 0 −5
√

182/286 5
√

546/286
fξ fη 0 0 0 0
fξ fζ 0 0 0 0

fη fη −15
√

26/143 0 −5
√

182/286 −5
√

546/286
fη fζ 0 0 0 0

fζ fζ −15
√

26/143 0 5
√

182/143 0

ψi ψj k = 6(t1) k = 6(ta2 ) k = 6(tb2 )

fa fa 0 0 0

fa fx 0 20
√

182/429 0

fa fy 0 20
√

182/429 0

fa fz 0 20
√

182/429 0

fa fξ 10
√

91/143 0 0

fa fη 10
√

91/143 0 0

fa fζ 10
√

91/143 0 0
fx fx 0 0 0

fx fy 0 5
√

2730/3432 −25
√

6006/3432

fx fz 0 5
√

2730/3432 −25
√

6006/3432
fx fξ 0 0 0

fx fη 5
√

1365/429 −5
√

182/264 −5
√

10 010/1144

fx fζ 5
√

1365/429 5
√

182/264 5
√

10 010/1144
fy fy 0 0 0

fy fz 0 5
√

2730/3432 −25
√

6006/3432
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Table 2. (Continued)

ψi ψj k = 6(t1) k = 6(ta2 ) k = 6(tb2 )

fy fξ 5
√

1365/429 5
√

182/264 5
√

10 010/1144
fy fη 0 0 0

fy fζ 5
√

1365/429 −5
√

182/264 −5
√

10 010/1144
fz fz 0 0 0

fz fξ 5
√

1365/429 −5
√

182/264 −5
√

10 010/1144

fz fη 5
√

1365/429 5
√

182/264 5
√

10 010/1144
fz fζ 0 0 0
fξ fξ 0 0 0

fξ fη 0 −35
√

2730/3432 5
√

6006/1144

fξ fζ 0 −35
√

2730/3432 5
√

6006/1144
fη fη 0 0 0

fη fζ 0 −35
√

2730/3432 5
√

6006/1144
fζ fζ 0 0 0

ψi ψj k = 2(eθ ) k = 2(eε) k = 2(t2)

s dξ 0 0 1
s dη 0 0 1
s dζ 0 0 1
s dθ 1 0 0
s dε 0 1 0

px fa 0 0
√

21/7

px fx −3
√

105/70 9
√

35/70 0

px fy 0 0 −3
√

35/35

px fz 0 0 −3
√

35/35

px fξ −3
√

7/14 −√
21/14 0

px fη 0 0 −√
21/7

px fζ 0 0
√

21/7

py fa 0 0
√

21/7

py fx 0 0 −3
√

35/35

py fy −3
√

105/70 −9
√

35/70 0

py fz 0 0 −3
√

35/35

py fξ 0 0
√

21/7

py fη 3
√

7/14 −√
21/14 0

py fζ 0 0 −√
21/7

pz fa 0 0
√

21/7

pz fx 0 0 −3
√

35/35

pz fy 0 0 −3
√

35/35

pz fz 3
√

105/35 0 0

pz fξ 0 0 −√
21/7

pz fη 0 0
√

21/7

pz fζ 0
√

21/7 0

ψi ψj k = 4(a1) k = 4(eθ ) k = 4(eε) k = 4(t1) k = 4(t2)

px fa 0 0 0 0 2
√

7/7

px fx 2/3 −√
35/21

√
105/21 0 0

px fy 0 0 0 −√
15/6 −√

105/42

px fz 0 0 0
√

15/6 −√
105/42
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Table 2. (Continued)

ψi ψj k = 4(a1) k = 4(eθ ) k = 4(eε) k = 4(t1) k = 4(t2)

px fξ 0
√

21/7
√

7/7 0 0

px fη 0 0 0 −1/2 3
√

7/14

px fζ 0 0 0 −1/2 −3
√

7/14

py fa 0 0 0 0 2
√

7/7

py fx 0 0 0
√

15/6 −√
105/42

py fy 2/3 −√
35/21 −√

105/21 0 0

py fz 0 0 0 −√
15/6 −√

105/42

py fξ 0 0 0 −1/2 −3
√

7/14

py fη 0 −√
21/7

√
7/7 0 0

py fζ 0 0 0 −1/2 3
√

7/14

pz fa 0 0 0 0 2
√

7/7

pz fx 0 0 0 −√
15/6 −√

105/42

pz fy 0 0 0
√

15/6 −√
105/42

pz fz 2/3 2
√

35/21 0 0 0

pz fξ 0 0 0 −1/2 3
√

7/14

pz fη 0 0 0 −1/2 −3
√

7/14

pz fζ 0 0 −2
√

7/7 0 0

ψi ψj k = 1(t1) k = 3(a2) k = 3(t1) k = 3(t2)

s px 1
s py 1
s pz 1

s fa 1 0 0
s fx 0 1 0
s fy 0 1 0
s fz 0 1 0
s fξ 0 0 1
s fη 0 0 1
s fζ 0 0 1

px dξ 0
√

21/7 0 0

px dη

√
15/5 0 −3

√
35/35

√
21/7

px dζ

√
15/5 0 −3

√
35/35 −√

21/7

px dθ −√
5/5 0 −3

√
105/70 −3

√
7/14

px dε

√
15/5 0 9

√
35/70 −√

21/14

py dξ

√
15/5 0 −3

√
35/35 −√

21/7

py dη 0
√

21/7 0 0

py dζ

√
15/5 0 −3

√
35/35

√
21/7

py dθ −√
5/5 0 −3

√
105/70 3

√
7/14

py dε −√
15/5 0 −9

√
35/70 −√

21/14

pz dξ

√
15/5 0 −3

√
35/35

√
21/7

pz dη

√
15/5 0 −3

√
35/35 −√

21/7

pz dζ 0
√

21/7 0 0

pz dθ 2
√

5/5 0 3
√

105/35 0

pz dε 0 0 0
√

21/7

dξ fa
√

21/7 0 −2/3 0
dξ fx 0 −2/3 0 0

dξ fy −3
√

35/35 0 −√
15/30 −1/6
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Table 2. (Continued)

ψi ψj k = 1(t1) k = 3(a2) k = 3(t1) k = 3(t2)

dξ fz −3
√

35/35 0 −√
15/30 1/6

dξ fξ 0 0 0 0

dξ fη
√

21/7 0 1/6 −√
15/6

dξ fζ −√
21/7 0 −1/6 −√

15/6

dη fa
√

21/7 0 −2/3 0

dη fx −3
√

35/35 0 −√
15/30 1/6

dη fy 0 −2/3 0 0

dη fz −3
√

35/35 0 −√
15/30 −1/6

dη fξ −√
21/7 0 −1/6 −√

15/6
dη fη 0 0 0 0

dη fζ
√

21/7 0 1/6 −√
15/6

dζ fa
√

21/7 0 −2/3 0

dζ fx −3
√

35/35 0 −√
15/30 −1/6

dζ fy −3
√

35/35 0 −√
15/30 1/6

dζ fz 0 −2/3 0 0

dζ fξ
√

21/7 0 1/6 −√
15/6

dζ fη −√
21/7 0 −1/6 −√

15/6
dζ fζ 0 0 0 0
dθ fa 0 0 0 0

dθ fx −3
√

105/70 0 −2
√

5/15
√

3/3

dθ fy −3
√

105/70 0 −2
√

5/15 −√
3/3

dθ fz 3
√

105/35 0 4
√

5/15 0

dθ fξ −3
√

7/14 0
√

3/3 0

dθ fη 3
√

7/14 0 −√
3/3 0

dθ fζ 0 0 0 0

dε fa 0 0 0 0

dε fx 9
√

35/70 0 2
√

15/15 1/3

dε fy −9
√

35/70 0 −2
√

15/15 1/3
dε fz 0 0 0 −2/3

dε fξ −√
21/14 0 1/3 0

dε fη −√
21/14 0 1/3 0

dε fζ
√

21/7 0 −2/3 0

ψi ψj k = 5(eθ ) k = 5(eε) k = 5(ta1 ) k = 5(tb1 ) k = 5(t2)

dξ fa 0 0 5
√

77/231 −√
55/11 0

dξ fx 5
√

33/66 5
√

11/66 0 0 0

dξ fy 0 0 5
√

1155/462 5
√

33/66 5
√

11/33

dξ fz 0 0 5
√

1155/462 5
√

33/66 −5
√

11/33

dξ fξ −√
55/22

√
165/22 0 0 0

dξ fη 0 0 −25
√

77/462
√

55/22 −√
165/33

dξ fζ 0 0 25
√

77/462 −√
55/22 −√

165/33

dη fa 0 0 5
√

77/231 −√
55/11 0

dη fx 0 0 5
√

1155/462 5
√

33/66 −5
√

11/33

dη fy −5
√

33/66 5
√

11/66 0 0 0

dη fz 0 0 5
√

1155/462 5
√

33/66 5
√

11/33

dη fξ 0 0 25
√

77/462 −√
55/22 −√

165/33
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Table 2. (Continued)

ψi ψj k = 5(eθ ) k = 5(eε) k = 5(ta1 ) k = 5(tb1 ) k = 5(t2)

dη fη −√
55/22 −√

165/22 0 0 0

dη fζ 0 0 −25
√

77/462
√

55/22 −√
165/33

dζ fa 0 0 5
√

77/231 −√
55/11 0

dζ fx 0 0 5
√

1155/462 5
√

33/66 5
√

11/33

dζ fy 0 0 5
√

1155/462 5
√

33/66 −5
√

11/33

dζ fz 0 −5
√

11/33 0 0 0

dζ fξ 0 0 −25
√

77/462
√

55/22 −√
165/33

dζ fη 0 0 25
√

77/462 −√
55/22 −√

165/33

dζ fζ
√

55/11 0 0 0 0

dθ fa 0 −√
55/11 0 0 0

dθ fx 0 0 −5
√

385/231 0 −5
√

33/66

dθ fy 0 0 −5
√

385/231 0 5
√

33/66

dθ fz 0 0 10
√

385/231 0 0

dθ fξ 0 0 −5
√

231/462 −√
165/22 −√

55/22

dθ fη 0 0 5
√

231/462
√

165/22 −√
55/22

dθ fζ 0 0 0 0
√

55/11

dε fa
√

55/11 0 0 0 0

dε fx 0 0 5
√

1155/231 0 −5
√

11/66

dε fy 0 0 −5
√

1155/231 0 −5
√

11/66

dε fz 0 0 0 0 5
√

11/33

dε fξ 0 0 −5
√

77/462 −√
55/22

√
165/22

dε fη 0 0 −5
√

77/462 −√
55/22 −√

165/22

dε fζ 0 0 5
√

77/231
√

55/11 0

cubic symmetry. For example, a crystal field of rhombic symmetry can be described as one
in which a cube is stretched along the symmetry axis (z) followed by a decrease in the area
of the top face at +z and an increase in the area of the bottom face at −z. The normal mode
displacements are illustrated by Sturge for both octahedral and tetrahedral configurations [8],
the latter being of interest in our example. The first distortion involving the stretching of the
cube is a normal mode of eθ symmetry. This can be seen from [8] or by examining the kubic
harmonic k = 2(eθ ) in table 1. The second distortion is a normal mode of t2ζ symmetry.
Hence, the crystal-field Hamiltonian can be written as

H = VcubOcub + Veθ Oeθ + Vt2ζ Ot2ζ (8)

where the Vi give the strengths of the different symmetry interactions and the Oi are the
operators that take the form of the kubic harmonics (Ocub ≡ k = 0(a1)). The relative matrix
elements of these operators taken between atomic functions belonging to the same irreducible
representation can be obtained from our table 2. The crystal-field interaction of equation (8)
taken within d electrons is then

H =




−4Dq + V t2
eθ V

t2
t2ζ 0 0 0

V
t2
t2ζ −4Dq + V t2

eθ 0 0 0
0 0 −4Dq − 2V t2

eθ V
t2−e
t2ζ 0

0 0 V
t2−e
t2ζ 6Dq + V e

eθ 0
0 0 0 0 6Dq − V e

eθ


 (9)

where we have replaced the cubic-field coupling-strength parameter with the standard 10Dq

used to define the cubic-field splitting between the e and t2 d states. We note that this
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Hamiltonian was written without ever having to expand the potential, that is expand 1/rij , in
rigorous mathematical fashion. This feature is particularly appealing when dealing with very
low symmetry crystal fields. This clearly demonstrates the power and beauty of employing
operators transforming as the kubic harmonics in the expansion of the crystal-field interaction.

As a final example, table 2 can be used to determine the expansion of the product of two
kubic harmonics. The product of two kubic harmonics can be written as a linear combination
of kubic harmonics. We find that

KHlm(x, y, z)KHl′m′(x, y, z) =
l+l′∑

k=|l−l′|

∑
q

ckq(lm, l′m′)KHkq(x, y, z). (10)

That the expansion coefficients are simply the ckq(lm, l′m′) from table 2 can be demonstrated
in the usual fashion from the orthogonality of the kubic harmonics.

3. Conclusion

These tables enable those doing crystal-field-type calculations to work entirely within the kubic
harmonic basis set for the electronic states. The use of this basis set has already been shown to
facilitate the determination and interpretation of the crystal field at an impurity site, particularly
sites of low symmetry. Up to now, however, one had to switch between electronic basis sets
as the electron–electron interaction was calculated using the spherical harmonic basis set and
the crystal field was calculated using the kubic harmonic basis set. We hope and expect that
these tables will aid those performing future crystal-field-type calculations.
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